ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
R. A. Knief, B. W. Wehring, M. E. Wyman
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 47-60
Technical Paper | doi.org/10.13182/NSE74-A23329
Articles are hosted by Taylor and Francis Online.
Absolute measurements were made for the equilibrium and time-dependent beta-ray energy spectra from fission fragments produced by spontaneous fission of 252Cf. The beta rays were detected by a plastic scintillator and the fission rate was monitored by a semiconductor detector. The equilibrium spectrum was measured from a 252 Cf source permanently encapsulated between two Mylar foils thick enough to stop the fragments. The time-dependent measurements used a 252Cf source supported on a thin nickel foil and covered with a thin collodion foil. Virtually all fragments from this second source escaped the foils. By use of a special transport system, the time dependence of the 252Cf beta-ray energy spectrum was measured for two cases: (a) buildup of the spectrum following initiation of fragment collection on clean catcher foils, and (b) decay of the spectrum following a period of fragment collection. The measured spectra were corrected for energy resolution effects by unfolding them with the use of a measured system response function. The measured data were used to generate empirical expressions for the equilibrium and time-dependent beta-ray spectra from 252 Cf fission fragments. The total number of beta rays from one fission was estimated to be 6.7 ± 0.3, while the total beta-ray energy was estimated to be 6.1 ± 0.5 MeV. The results of the measurements were compared with the analogous measurements for thermal-neutron fission of 235U. High-energy transitions (5 to 10 MeV) found for 235U fission were not found for 252Cf fission.