ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. A. Lake, J. M. Kallfelz
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 27-46
Technical Paper | doi.org/10.13182/NSE74-A23328
Articles are hosted by Taylor and Francis Online.
Thermal-neutron energy spectra have been measured as a function of trans-verse buckling and of space position along the longitudinal axes of 25.4- × 25.4-and 35.6- × 35.6-cm beryllium assemblies by the slow-chopper, time-of-flight technique using the thermal column of the Georgia Tech Research Reactor as the steady-state neutron source. For neutrons moving in the (forward) positive Z direction, we find no evidence of the establishment of, or the tendency toward, discrete asymptotic decay conditions from the strongly space-dependent spectra in either assembly. This is a direct experimental verification of the disappearance of the discrete set of eigenvalues and eigenfunctions in the diffusion-length problem with transverse leakage. These results are in at least qualitative agreement with the transport theory predictions of Williams, but in disagreement with the diffusion theory results of Ahmed, Kothari, and Kumar which predict that a true discrete mode should exist in beryllium assemblies as small as 30 × 30 cm.