ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. A. Lake, J. M. Kallfelz
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 27-46
Technical Paper | doi.org/10.13182/NSE74-A23328
Articles are hosted by Taylor and Francis Online.
Thermal-neutron energy spectra have been measured as a function of trans-verse buckling and of space position along the longitudinal axes of 25.4- × 25.4-and 35.6- × 35.6-cm beryllium assemblies by the slow-chopper, time-of-flight technique using the thermal column of the Georgia Tech Research Reactor as the steady-state neutron source. For neutrons moving in the (forward) positive Z direction, we find no evidence of the establishment of, or the tendency toward, discrete asymptotic decay conditions from the strongly space-dependent spectra in either assembly. This is a direct experimental verification of the disappearance of the discrete set of eigenvalues and eigenfunctions in the diffusion-length problem with transverse leakage. These results are in at least qualitative agreement with the transport theory predictions of Williams, but in disagreement with the diffusion theory results of Ahmed, Kothari, and Kumar which predict that a true discrete mode should exist in beryllium assemblies as small as 30 × 30 cm.