ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Timothy J. Donovan, Yaron Danon
Nuclear Science and Engineering | Volume 143 | Number 3 | March 2003 | Pages 226-239
Technical Paper | doi.org/10.13182/NSE03-A2332
Articles are hosted by Taylor and Francis Online.
Monte Carlo algorithms are developed to calculate the ensemble-average particle leakage through the boundaries of a two-dimensional binary stochastic material. The mixture is specified within a rectangular area and consists of a fixed number of disks of constant radius randomly embedded in a matrix material. The algorithms are extensions of the proposal of Zimmerman et al., using chord-length sampling (CLS) to eliminate the need to explicitly model the geometry of the mixture. Two variations are considered. The first algorithm uses CLS for both material regions. The second algorithm employs limited CLS (LCLS), using only CLS in the matrix material. Ensemble-average leakage results are computed for a range of material interaction coefficients and compared against benchmark results for both accuracy and efficiency. Both algorithms are exact for purely absorbing materials and provide decreasing accuracy as scattering is increased in the matrix material. The LCLS algorithm shows a better accuracy than the CLS algorithm for all cases while maintaining an equivalent or better efficiency. Accuracy and efficiency problems with the CLS algorithm are due principally to assumptions made in determining the chord-length distribution within the disks.