ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Timothy J. Donovan, Yaron Danon
Nuclear Science and Engineering | Volume 143 | Number 3 | March 2003 | Pages 226-239
Technical Paper | doi.org/10.13182/NSE03-A2332
Articles are hosted by Taylor and Francis Online.
Monte Carlo algorithms are developed to calculate the ensemble-average particle leakage through the boundaries of a two-dimensional binary stochastic material. The mixture is specified within a rectangular area and consists of a fixed number of disks of constant radius randomly embedded in a matrix material. The algorithms are extensions of the proposal of Zimmerman et al., using chord-length sampling (CLS) to eliminate the need to explicitly model the geometry of the mixture. Two variations are considered. The first algorithm uses CLS for both material regions. The second algorithm employs limited CLS (LCLS), using only CLS in the matrix material. Ensemble-average leakage results are computed for a range of material interaction coefficients and compared against benchmark results for both accuracy and efficiency. Both algorithms are exact for purely absorbing materials and provide decreasing accuracy as scattering is increased in the matrix material. The LCLS algorithm shows a better accuracy than the CLS algorithm for all cases while maintaining an equivalent or better efficiency. Accuracy and efficiency problems with the CLS algorithm are due principally to assumptions made in determining the chord-length distribution within the disks.