ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
S. J. Board, R. B. Duffey, C. L. Farmer, D. H. Poole
Nuclear Science and Engineering | Volume 52 | Number 4 | December 1973 | Pages 433-438
Technical Paper | doi.org/10.13182/NSE73-A23309
Articles are hosted by Taylor and Francis Online.
The use of equilibrium models for the analysis of metal-water explosions is examined. A theoretical thermal interaction model is then developed that uses the results of basic experiments on transient energy transfer from hot surfaces under water to predict the pressures produced in a metal-water thermal explosion. The model calculates the pressure resulting from energy transfer to a nonequilibrium two-phase coolant expanding in a shock-tube geometry. It is shown that the pressure depends greatly on the distribution of energy between vapor and liquid phases of the coolant and that, in the range of experimentally determined distributions where ∼10% of the flux produces evaporation, the pressure is more sensitive to the effective vapor generation rate than to the total flux. Using experimental energy distributions as input data and assuming that the interaction surface area is that determined from analysis of explosion debris, it is shown that the model predicts successfully the peak pressures resulting from two aluminum-water explosions. The results give some confidence that the surface area present at the time of an interaction is of the same order as that of the solidified debris. To predict the results of a thermal interaction in other fluids, however, in addition to the surface-area problem it may be necessary to obtain experimental information about the distribution of energy in the coolant, particularly the effective rate of vapor generation.