ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
J. B. Fussell
Nuclear Science and Engineering | Volume 52 | Number 4 | December 1973 | Pages 421-432
Technical Paper | doi.org/10.13182/NSE73-A23308
Articles are hosted by Taylor and Francis Online.
A model is presented for formulating the Boolean failure logic, called the fault tree, for electrical systems from associated schematic diagrams and system-independent component information. The model is developed in detail for electrical systems, while its implication and terminology extend to all fault tree construction. The methodology is verified as formal by fault trees constructed by a computer—with typical execution times for a fault tree with 100 gates on the order of 7 sec (on the UNIVAC 1108 computer). The model, called Synthetic Tree Model, is a synthesis technique for piecing together, with proper editing, a fault tree from system-independent component information beginning with the main failure of interest and proceeding to more basic failures. The resultant fault trees are in conventional format, use conventional symbols, and are, consequently, immediately compatible with existing solution techniques. While Synthetic Tree Model develops the fault tree to the level of primary failures, extensions of the model could handle secondary failures, i.e., failure-related feedback between components.