ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Benjamin S. Wang, George H. Miley
Nuclear Science and Engineering | Volume 52 | Number 1 | September 1973 | Pages 130-141
Technical Paper | doi.org/10.13182/NSE73-A23296
Articles are hosted by Taylor and Francis Online.
A Monte Carlo simulation model for radiation-induced plasmas with nonlinear properties due to recombination has been developed employing a piecewise-linearized predict-correct technique. Several variance reduction techniques are used, including antithetic variates. The resulting code is applied to the determination of the electron energy distribution for a noble-gas plasma created by alpha-particle irradiation. Results are presented for helium with an electron source rate from 1014 to 1018 electrons/(cm3 sec), initial energies from 70 to 1500 eV, pressures from 10 to 760 Torr, and electric-field-to-pressure ratios from 0 to 10 V/(cm Torr). The low-energy portion of the distribution function approaches a Maxwellian for zero field and Druyvesteyn’s distribution with an applied electric field. However, above the ionization potential and extending to the source energy, a parabolic-shaped distribution (tail) occurs.