ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yoshikuni Shinohara, Ritsuo Oguma
Nuclear Science and Engineering | Volume 52 | Number 1 | September 1973 | Pages 76-83
Technical Paper | doi.org/10.13182/NSE73-A23290
Articles are hosted by Taylor and Francis Online.
A simple method of nonlinear filtering is applied to the problem of dynamic reactivity estimation in which the law of reactivity change is assumed to be unknown. The filter is designed based on a system model containing the usual point reactor kinetics equations driven by fictitious white noises and a reactivity state equation. The latter is formulated such that the rate of the reactivity change is a random process, taking account of the unknown reactivity change. The nonlinear filter applied here is a simple modification of the Kalman filter added with a nonlinear feedback loop. The key parameter that determines the filter response is the parameter of the fictitious noise in the reactivity equation which is closely related to the filter gain. The results of the computer simulation and the experiment show that the nonlinear filter can be used to estimate the dynamic reactivity, even under an extremely noisy measurement condition.