ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
R. C. Lloyd, E. D. Clayton
Nuclear Science and Engineering | Volume 52 | Number 1 | September 1973 | Pages 73-75
Technical Paper | doi.org/10.13182/NSE73-A23289
Articles are hosted by Taylor and Francis Online.
A series of criticality experiments have been completed with plutonium nitrate solutions made up from extremely high burnup fuel (239Pu isotopic concentration <½ total Pu). The measurements were performed on a large, 61-cm-diam, water-reflected, cylindrical vessel. The critical experiment data were analyzed by means of the KENO Monte Carlo code utilizing both ENDF/B-H and -III cross sections; the computed criticality factors were in the range of 1.6 to 1.9% above unity. The effects of the various heavy element isotopes on criticality were analyzed. The results show the importance of properly accounting for, and treating, the effects of each of the various isotopes in computing criticality. Even the presence of as little as 1% of 241 Am can cause a change in the reactivity of the solutions used in these experiments by ∼1%.