ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
C. M. Kang, K. F. Hansen
Nuclear Science and Engineering | Volume 51 | Number 4 | August 1973 | Pages 456-495
Technical Paper | doi.org/10.13182/NSE73-A23278
Articles are hosted by Taylor and Francis Online.
The application of the finite element method to problems in neutron diffusion in space, energy, and time is studied. The use of piecewise polynomials with a variational form of the diffusion equation leads to algebraic systems of equations with characteristics similar to the usual finite difference equations. In Part I, a theoretical analysis of the finite element method, with Hermite polynomials, is presented and rigorous error bounds for the approximate solution are developed. In Part II, numerical studies are presented for problems in space and time. The results confirm the theoretical analysis and indicate the power of the method for diffusion problems.