ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. A. Krist, C. G. Poncelet
Nuclear Science and Engineering | Volume 51 | Number 4 | August 1973 | Pages 347-375
Technical Paper | doi.org/10.13182/NSE73-A23272
Articles are hosted by Taylor and Francis Online.
An investigation of the stability of a nuclear power reactor subject to random macroscopic parameter variations is performed. An analysis procedure for determining the effect of stochastic coefficients on the stability in the mean and mean square of linear systems is presented. The procedure is based on Gaussian white process variations which can be shown to be governed by the Fokker-Planck equation. Moment equations are extracted from the Fokker-Planck equation and serve as system equations used for the stability analysis. It is shown that for some simple space-independent reactor models it is possible for random macroscopic parameter variation to destabilize in the mean and mean square a deterministically stable system. Conversely, the study has shown that under certain conditions random macroscopic variation of system parameters can also stabilize in the mean and mean square, a system which is deterministically unstable. A coupled-core spatial reactor model is utilized for the investigation of xenon instability. The results of this analysis again indicate that random macroscopic parameter variation can be a stabilizing or destabilizing influence. Analog simulations of linear systems with stochastic coefficients and a simple reactor model are used to verify the analysis procedure developed in this research.