ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
G. A. Krist, C. G. Poncelet
Nuclear Science and Engineering | Volume 51 | Number 4 | August 1973 | Pages 347-375
Technical Paper | doi.org/10.13182/NSE73-A23272
Articles are hosted by Taylor and Francis Online.
An investigation of the stability of a nuclear power reactor subject to random macroscopic parameter variations is performed. An analysis procedure for determining the effect of stochastic coefficients on the stability in the mean and mean square of linear systems is presented. The procedure is based on Gaussian white process variations which can be shown to be governed by the Fokker-Planck equation. Moment equations are extracted from the Fokker-Planck equation and serve as system equations used for the stability analysis. It is shown that for some simple space-independent reactor models it is possible for random macroscopic parameter variation to destabilize in the mean and mean square a deterministically stable system. Conversely, the study has shown that under certain conditions random macroscopic variation of system parameters can also stabilize in the mean and mean square, a system which is deterministically unstable. A coupled-core spatial reactor model is utilized for the investigation of xenon instability. The results of this analysis again indicate that random macroscopic parameter variation can be a stabilizing or destabilizing influence. Analog simulations of linear systems with stochastic coefficients and a simple reactor model are used to verify the analysis procedure developed in this research.