ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. Y. Fu, F. B. Guimaraes, L. C. Leal
Nuclear Science and Engineering | Volume 143 | Number 2 | February 2003 | Pages 164-176
Technical Paper | doi.org/10.13182/NSE03-A2327
Articles are hosted by Taylor and Francis Online.
High-energy transport codes for the design of accelerator-driven systems such as the Spallation Neutron Source use nuclear reaction models as the incident particle, and the secondary particles are transported through various materials. These reaction models are computationally fast but are unreliable at energies below ~200 MeV. As a partial remedy, an evaluated cross-section library up to 150 MeV known as LA150 was developed by international cooperation and made available for such design work. In the present project we have been developing a model code suitable for improving LA150 and extending it to higher energies. This new model code combines microscopically the semiclassical results of an intranuclear-cascade model with the spin-dependent counterparts of a preequilibrium Hauser-Feshbach model. To achieve this microscopic combination, an approximation, explained in this paper, is needed to add spin distributions to the semiclassical excitation spectra in every residual nuclide. The initial capability of this code is demonstrated by comparisons with experimental production cross sections of the radioisotopes 56Co, 55Co, 54Mn, 52Mn, 52Fe, 51Cr, 48Cr, 48V, 47Sc, and 46Sc induced by proton projectiles on Fe from reaction thresholds to 3 GeV. The overall agreement of our calculated results with experimental data looks very good in view of the 29 contributions in recent model code intercomparisons with measurements.