ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Susumu Minato
Nuclear Science and Engineering | Volume 51 | Number 1 | May 1973 | Pages 32-40
Technical Paper | doi.org/10.13182/NSE73-A23255
Articles are hosted by Taylor and Francis Online.
Energy spectra resulting from the scattering of gamma rays under various conditions were calculated by a Monte Carlo method. As a result of systematic studies on the low energy components of the spectra, it was found that they were not affected very much by source energy or scatterer geometry but were affected by the atomic number of the scatterer. These properties could be explained successfully by a relatively simple theory including the continuous slowing down approximation. A formula expressing the relationship between the position of the peak appearing in the low energy region of the spectrum and the atomic number of the scatterer was derived from the above calculations and the theory.