ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Yonghee Kim, Won Seok Park, Tae Yung Song, Chang Kue Park
Nuclear Science and Engineering | Volume 143 | Number 2 | February 2003 | Pages 141-157
Technical Paper | doi.org/10.13182/NSE03-A2325
Articles are hosted by Taylor and Francis Online.
The height-to-diameter (H/D) ratio of a lead-bismuth eutectic (LBE)-cooled accelerator-driven system (ADS) has been evaluated in terms of the neutron multiplication, the coolant void worth, and the coolant velocity. For a model ADS, an optimization of the H/D ratio is performed with a Monte Carlo code both for the effective multiplication factor keff and for the multiplication of the external neutrons. In the optimization, ten cases of H/D values have been analyzed for a homogeneous fuel blanket. Also, the dependency of the optimal H/D ratio on the target/buffer is addressed. The Monte Carlo simulations show that the optimal H/D configuration of the ADS core is quite different for the two important measures, and a high H/D ratio can provide a significantly higher source multiplication than the traditional pancake core. Furthermore, various core analyses including depletion calculations are conducted for three selected heterogeneous cores with different H/D ratios, which are a small H/D value (pancake type), a medium H/D value, and a high H/D value, respectively. Void reactivity coefficients of the LBE coolant are evaluated and compared for the three designs to quantify the effects of the H/D ratio. Additionally, a thermal-hydraulic analysis has been performed to derive a maximum allowable core height subject to the LBE velocity limit due to its corrosion and erosion characteristics. It is shown that the practically optimal H/D ratio for source multiplication is tightly constrained by the maximum allowable LBE velocity, depending on the core design parameters.