ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Yoshihiko Kaneko, Shuzi Ohkubo, Fujiyoshi Akino
Nuclear Science and Engineering | Volume 50 | Number 2 | February 1973 | Pages 173-176
Technical Note | doi.org/10.13182/NSE73-A23243
Articles are hosted by Taylor and Francis Online.
An improved data processing method is developed for pulsed-neutron measurements in a multiplying medium. The characteristic feature of the method is to determine the value of the prompt-neutron decay constant a as accurately as possible by removing the delayed-neutron decay component from the raw experimental data. The delay ed-neutron decay component is estimated to be the deviation of the response of a one-point reactor from a single exponential decay for repeated pulsed-neutron bursts. It is obtained by taking account of the first and second post-neutron bursts. From the application of the method to some test data provided by calculation and to experimental data from pulsedneutron experiments in the Semi-Homogeneous Ex-periment it is found that the usual data processing method, disregarding the slowly decaying delayedneutron mode, should underestimate the value of a by ∼4% in a near-critical multiplying medium having a neutron lifetime of ∼1 msec.