ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
David J. Loaiza, Rene Sanchez, Roger Brewer
Nuclear Science and Engineering | Volume 143 | Number 2 | February 2003 | Pages 132-140
Technical Paper | doi.org/10.13182/NSE03-A2324
Articles are hosted by Taylor and Francis Online.
Critical experiments are carried out in order to validate, improve, and benchmark the extensive data calculations available. A series of such experiments was performed at the Los Alamos Criticality Experiments Facility. These experiments were performed to provide criticality safety data for waste matrix materials. These critical experiments were fueled with highly enriched uranium, moderated and reflected with polyethylene, and mixed with silicon dioxide (SiO2), aluminum (Al), magnesium oxide (MgO), and gadolinium (Gd). The uncertainties affecting the experiment were divided into three broad categories: mass measurement, geometry, and material composition. Each category is considered in turn, and then the total experimental uncertainty is derived. All four experiments had a measured keff of 1.001. The sensitivity analyses of these critical experiments yielded uncertainties in the measured keff of ±0.0026 for SiO2, ±0.0026 for Al, ±0.0021 for MgO, and ±0.0029 for Gd. These experiments were judged to be of benchmark quality.