ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
P. Goldschmidt
Nuclear Science and Engineering | Volume 50 | Number 2 | February 1973 | Pages 153-163
Technical Paper | doi.org/10.13182/NSE73-A23239
Articles are hosted by Taylor and Francis Online.
A model is presented which enables us to find the distribution of fuel enrichment that minimizes the fuel cycle cost of a fast reactor, subject to constraints on the enrichment, power, and power density. The reactor is described by a discontinuous one-group diffusion model in slab geometry.Making use of Pontryagin’s Maximum Principle, as extended by Gossez and by Vincent and Mason, the optimal sequence of control (enrichment) zones is found a priori. The latter consists of a central constant power density zone, a maximum enrichment zone, a minimum enrichment zone, and a reflector.The numerical solution of the problem is based on an automatic double iteration search procedure requiring no input trial function.Under the economic conditions considered, it seems preferable to start up the first fast breeder demonstration plants with a core surrounded by reflector elements; radial blanket subassemblies should be inserted only later, and progressively, when fabrication costs decrease and the operational knowledge improves.