ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
S. R. Bierman, E. D. Clayton, L. E. Hansen
Nuclear Science and Engineering | Volume 50 | Number 2 | February 1973 | Pages 115-126
Technical Paper | doi.org/10.13182/NSE73-2
Articles are hosted by Taylor and Francis Online.
Data are presented from critical experiments with mixed PuO2-UO2 fuels containing 30.0, 14.62, and 7.89 wt% Pu and having H/X (H:Pu + U) atomic ratios of 47.4, 30.6, and 51.8, respectively. In addition to the experimental results, which can be used directly as integral benchmark checkpoints, derived critical sizes are presented for homogeneous mixtures, at theoretical density, of 239PuO2-U(0.71)O2-water in slab, spherical, and cylindrical geometries at the three experimental H/X atomic ratios. These types of data provide the bases for establishing criticality safety control limits.Critical thicknesses of 10.80 ± 0.11, 11.56 ± 0.09, and 14.83 ± 0.60 cm were determined, respectively, for slabs of the 30.0, 14.62, and 7.89 wt% Pu-enriched fuels infinite in two dimensions and fully reflected with 15 cm of Plexiglas. Values of keff within 8 mk of unity were calculated for these three critical systems using either the diffusion theory code, HFN, or the transport theory code, DTF-IV, with the original GAMTEC-II cross-section data previously used at the Critical Mass Laboratory in correlating plutonium critical experiments with theory. Similar calculations with ENDF/B-II cross-section data yielded keff values within 12 mk of unity for these three one-dimensional slab assemblies. Except for the more highly moderated 8 wt% Pu-enriched fuel (H/Pu = 659), calculations with ENDF/B-II data resulted in higher keff values for the critical assemblies than did like calculations using the original GAMTEC-II cross-section library. In the case of the 8 wt% Pu enriched fuel, the computed values for were essentially the same for either of the cross-section sets used.