ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
M. J. Haire, L. R. Zumwalt
Nuclear Science and Engineering | Volume 50 | Number 2 | February 1973 | Pages 91-97
Technical Paper | doi.org/10.13182/NSE73-A23232
Articles are hosted by Taylor and Francis Online.
To determine fission product-graphite sorption behavior, an experimental and analytical study was conducted to obtain a model which would predict the vapor pressures of mixtures of sorbed fission product metals as a function of temperature and composition.The graphite sorbents studied were SP-1C, a very pure natural flake graphite, and TS-688, a typical needle-coke nuclear-grade graphite. Cesium and rubidium tagged with 137Cs and 86Rb were the sorbates, and the pseudo-isopiestic method was used to determine sorbate concentrations as a function of temperature and vapor pressure. Three models were examined for their capability in predicting binary mixed sorption behavior.Experiments showed the following: (a) The vapor pressure of a species varies inversely with the fraction of total sorbate metal present at a given sorbate concentration and temperature; (b) thermodynamic and FREVAP models were the most successful in the prediction of binary sorption behavior from single component isotherm data. It is concluded that if the departure from ideal adsorption behavior is not known, either model may be used in the calculation of fission product release.