ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
M. M. R. Williams
Nuclear Science and Engineering | Volume 143 | Number 1 | January 2003 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE03-A2314
Articles are hosted by Taylor and Francis Online.
A model of neutron multiplication for aggregates of randomly placed fissile spheres with random material properties in a background medium is presented in terms of the transport equation. Two distinct problems are examined: (1) small spheres in an infinite bulk medium in which the total cross section in the spheres and bulk medium are the same and (2) small spheres in a void or purely absorbing medium but with different total cross sections in sphere and medium. In both cases we consider criticality in which there are random material properties of the spheres and random positions in the container. The random sphere problem is studied statistically by calculating the multiplication factor for many thousands of cases with different positions and material properties and, from the results, constructing a probability distribution function for the multiplication factor. Some of the results are also calculated using diffusion theory and therefore we are able to give guidance on the likely errors caused by diffusion theory in this type of problem.Although the problems are restricted to the one speed approximation, they may be applicable to fast neutron problems and we apply the work to spheres composed of random proportions of 235U and 238U. The work also has some bearing on the physical behaviour of pebble bed reactors which are of current interest, and in the storage of fissile waste. We have also discussed some of the underlying statistical problems associated with random arrays of spheres in a uniform lattice. In formulating our problem, we use the collision probability technique and as a by-product derive some new inter-lump collision probabilities for two spheres.