ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. M. R. Williams
Nuclear Science and Engineering | Volume 143 | Number 1 | January 2003 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE03-A2314
Articles are hosted by Taylor and Francis Online.
A model of neutron multiplication for aggregates of randomly placed fissile spheres with random material properties in a background medium is presented in terms of the transport equation. Two distinct problems are examined: (1) small spheres in an infinite bulk medium in which the total cross section in the spheres and bulk medium are the same and (2) small spheres in a void or purely absorbing medium but with different total cross sections in sphere and medium. In both cases we consider criticality in which there are random material properties of the spheres and random positions in the container. The random sphere problem is studied statistically by calculating the multiplication factor for many thousands of cases with different positions and material properties and, from the results, constructing a probability distribution function for the multiplication factor. Some of the results are also calculated using diffusion theory and therefore we are able to give guidance on the likely errors caused by diffusion theory in this type of problem.Although the problems are restricted to the one speed approximation, they may be applicable to fast neutron problems and we apply the work to spheres composed of random proportions of 235U and 238U. The work also has some bearing on the physical behaviour of pebble bed reactors which are of current interest, and in the storage of fissile waste. We have also discussed some of the underlying statistical problems associated with random arrays of spheres in a uniform lattice. In formulating our problem, we use the collision probability technique and as a by-product derive some new inter-lump collision probabilities for two spheres.