ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 142 | Number 3 | November 2002 | Pages 327-341
Technical Paper | doi.org/10.13182/NSE02-A2311
Articles are hosted by Taylor and Francis Online.
The standard implementation of the differential operator (Taylor series) perturbation method for Monte Carlo criticality problems has previously been shown to have a wide range of applicability. In this method, the unperturbed fission distribution is used as a fixed source to estimate the change in the keff eigenvalue of a system due to a perturbation. A new method, based on the deterministic perturbation theory assumption that the flux distribution (rather than the fission source distribution) is unchanged after a perturbation, is proposed in this paper. Dubbed the F-A method, the new method is implemented within the framework of the standard differential operator method by making tallies only in perturbed fissionable regions and combining the standard differential operator estimate of their perturbations according to the deterministic first-order perturbation formula. The F-A method, developed to extend the range of applicability of the differential operator method rather than as a replacement, was more accurate than the standard implementation for positive and negative density perturbations in a thin shell at the exterior of a computational Godiva model. The F-A method was also more accurate than the standard implementation at estimating reactivity worth profiles of samples with a very small positive reactivity worth (compared to actual measurements) in the Zeus critical assembly, but it was less accurate for a sample with a small negative reactivity worth.