ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 142 | Number 3 | November 2002 | Pages 327-341
Technical Paper | doi.org/10.13182/NSE02-A2311
Articles are hosted by Taylor and Francis Online.
The standard implementation of the differential operator (Taylor series) perturbation method for Monte Carlo criticality problems has previously been shown to have a wide range of applicability. In this method, the unperturbed fission distribution is used as a fixed source to estimate the change in the keff eigenvalue of a system due to a perturbation. A new method, based on the deterministic perturbation theory assumption that the flux distribution (rather than the fission source distribution) is unchanged after a perturbation, is proposed in this paper. Dubbed the F-A method, the new method is implemented within the framework of the standard differential operator method by making tallies only in perturbed fissionable regions and combining the standard differential operator estimate of their perturbations according to the deterministic first-order perturbation formula. The F-A method, developed to extend the range of applicability of the differential operator method rather than as a replacement, was more accurate than the standard implementation for positive and negative density perturbations in a thin shell at the exterior of a computational Godiva model. The F-A method was also more accurate than the standard implementation at estimating reactivity worth profiles of samples with a very small positive reactivity worth (compared to actual measurements) in the Zeus critical assembly, but it was less accurate for a sample with a small negative reactivity worth.