ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Man Gyun Na, Won Il Ko, Hangbok Choi
Nuclear Science and Engineering | Volume 142 | Number 3 | November 2002 | Pages 315-326
Technical Paper | doi.org/10.13182/NSE02-A2310
Articles are hosted by Taylor and Francis Online.
A combination method of spent pressurized water reactor (PWR) fuel is proposed that adjusts the fuel composition for direct use of spent PWR fuel in Canada deuterium uranium (CANDU) reactors (DUPIC). This method reduces the composition heterogeneity (variation) of the DUPIC fuel caused by directly reusing spent PWR fuel as DUPIC fuel feedstock. In this study, a combination method was used to find the optimum mixture composition from the spent PWR fuel database by minimizing the composition variation of the major fissile isotopes 235U and 239Pu. The simulation results have shown that the combination method can reduce the composition variation of 235U and 239Pu to 0.11 and 1.40%, respectively, through assemblywise mixing operation only. It is also believed that the result could be improved further through a rodwise combination technique if the isotopic composition of each spent PWR fuel rod is known by direct measurement during the DUPIC fuel fabrication process.