ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
V. Cvetkovic, S. Painter, J. O. Selroos
Nuclear Science and Engineering | Volume 142 | Number 3 | November 2002 | Pages 292-304
Technical Paper | doi.org/10.13182/NSE02-A2308
Articles are hosted by Taylor and Francis Online.
A probabilistic model for assessing the capacity of a fractured crystalline rock volume to contain radionuclides is developed. The rock volume is viewed as a network of discrete fractures through which radionuclides are transported by flowing water. Diffusive mass transfer between the open fractures and the stagnant water in the pore space of the rock matrix allow radionuclides access to mineral grains where physical and chemical processes - collectively known as sorption - can retain radionuclides. A stochastic Lagrangian framework is adopted to compute the probability that a radionuclide particle will be retained by the rock, i.e., the probability that it will decay before being released from the rock volume. A dimensionless quantity referred to as the "containment index" is related to this probability and proposed as a suitable measure for comparing different rock volumes; such a comparative measure may be needed, for example, in a site selection program for geological radioactive waste disposal. The probabilistic solution of the transport problem is based on the statistics of two Lagrangian variables: , the travel time of an imaginary tracer moving with the flowing water, and , a suitably normalized surface area available for retention. Statistics of and may be computed numerically using site-specific discrete fracture network simulations. Fracture data from the well-characterized Äspö Hard Rock Laboratory site in southern Sweden are used to illustrate the implementation of the proposed containment index for six radionuclides (126Sn, 129I, 135Cs, 237Np, 239Pu, and 79Se). It is found that fractures of small aperture imply prolonged travel times and hence long tails in both beta and tau. This, in turn, enhances retention and is favorable from a safety assessment perspective.