ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
V. Cvetkovic, S. Painter, J. O. Selroos
Nuclear Science and Engineering | Volume 142 | Number 3 | November 2002 | Pages 292-304
Technical Paper | doi.org/10.13182/NSE02-A2308
Articles are hosted by Taylor and Francis Online.
A probabilistic model for assessing the capacity of a fractured crystalline rock volume to contain radionuclides is developed. The rock volume is viewed as a network of discrete fractures through which radionuclides are transported by flowing water. Diffusive mass transfer between the open fractures and the stagnant water in the pore space of the rock matrix allow radionuclides access to mineral grains where physical and chemical processes - collectively known as sorption - can retain radionuclides. A stochastic Lagrangian framework is adopted to compute the probability that a radionuclide particle will be retained by the rock, i.e., the probability that it will decay before being released from the rock volume. A dimensionless quantity referred to as the "containment index" is related to this probability and proposed as a suitable measure for comparing different rock volumes; such a comparative measure may be needed, for example, in a site selection program for geological radioactive waste disposal. The probabilistic solution of the transport problem is based on the statistics of two Lagrangian variables: , the travel time of an imaginary tracer moving with the flowing water, and , a suitably normalized surface area available for retention. Statistics of and may be computed numerically using site-specific discrete fracture network simulations. Fracture data from the well-characterized Äspö Hard Rock Laboratory site in southern Sweden are used to illustrate the implementation of the proposed containment index for six radionuclides (126Sn, 129I, 135Cs, 237Np, 239Pu, and 79Se). It is found that fractures of small aperture imply prolonged travel times and hence long tails in both beta and tau. This, in turn, enhances retention and is favorable from a safety assessment perspective.