ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Guohui Zhang, Guoyou Tang, Jinxiang Chen, Songbai Zhang, Zhaomin Shi, Jing Yuan, Zemin Chen, Yu. M. Gledenov, M. Sedysheva, G. Khuukhenkhuu
Nuclear Science and Engineering | Volume 142 | Number 2 | October 2002 | Pages 203-206
Technical Paper | doi.org/10.13182/NSE02-A2300
Articles are hosted by Taylor and Francis Online.
The differential cross sections of the 10B(n, )7Li reaction were measured at 4.17, 5.02, 5.74, and 6.52 MeV by using a gridded ionization chamber. Neutrons were produced through the D(d,n)3He reaction. The absolute neutron flux was determined through the 238U(n,f) reaction. The experiment shows that as the neutron energy increases from 4.17 to 6.52 MeV, the differential cross section changes from almost 90-deg symmetry to obviously backward peaked in the center-of-mass reference system.