ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Jin Beak Park, Yong Soo Hwang, Chul Hyung Kang
Nuclear Science and Engineering | Volume 142 | Number 2 | October 2002 | Pages 165-176
Technical Paper | doi.org/10.13182/NSE02-A2297
Articles are hosted by Taylor and Francis Online.
Matrix diffusion into a rock matrix has been regarded to retard radionuclide migration in a fracture. Recent field findings on a fractured system indicate that only a small portion of the rock in a fractured porous medium contributes to holding a radionuclide by matrix diffusion. To understand this effect, radionuclide migration in a fracture and diffusion from a finite rock matrix to a fracture are discussed with limited matrix diffusion under solubility-limited boundary conditions of a target radionuclide for the band-type release. Numerical inversion of the Laplace transform method is applied to estimate concentrations in a fracture and a finite rock matrix and fluxes at the fracture surface. Matrix diffusion into a finite rock matrix shows enhanced radionuclide migration and a higher concentration profile in a fracture. Diffusive flux from a finite rock matrix into a fracture after the end of leaching time shows higher peak values than flux from an infinite rock matrix because of (a) higher saturation of a radionuclide in a finite rock matrix and (b) increase of a radionuclide concentration in a fracture. Therefore, it is more realistic and conservative to apply the finite matrix diffusion for the overall assessment in a potential repository embedded in a fractured porous medium.