ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
R. van Geemert, F. Jatuff, P. Grimm, R. Chawla
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 96-106
Technical Note | doi.org/10.13182/NSE02-A2291
Articles are hosted by Taylor and Francis Online.
Optimization criteria for the representability of numerical models for the estimation of relative reactivity changes, due to localized perturbations in boiling water reactor (BWR) lattices, have been theoretically developed and tested. The validity of the derived theoretical expressions has been assessed for the case of a reactivity perturbation corresponding to the removal of an individual fuel pin from a nominal BWR assembly, thus effectively substituting the pin by water. Such reactivity effects are of importance in the context of evaluating advanced fuel element designs, e.g., those employing part-length rods. Two different geometry models have been implemented for the LWR-PROTEUS critical research facility [full core (FC) and a smaller, reduced geometry (RG)], using the light water reactor assembly code BOXER, and calculations have been performed for the nominal cases (all pins present in the central test assembly) and the perturbed cases (individual pins removed). The FC results have been compared with the results of the RG model with two different boundary conditions (reflective and critical albedo). The comparisons have shown that the results of critical albedo calculations feature superior representability. Differences in relative reactivity effects, with respect to results of the FC calculation, are found to be within the range ±1 to ±4%.