ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Chang Je Park, Nam Zin Cho
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 64-74
Technical Note | doi.org/10.13182/NSE02-A2288
Articles are hosted by Taylor and Francis Online.
In solving the discrete ordinates neutron transport equation, the additive angular dependent rebalance (AADR) acceleration method proposed by the authors previously is simple to implement, unconditionally stable, and very effective. For slab geometry problems, it is demonstrated via Fourier analysis that the spectral radii of the AADR acceleration in S4-like and DP1-like rebalances as well as DP0-like rebalance are less than that of diffusion synthetic acceleration (DSA). This AADR acceleration method is easily extendable to DPN-like and low-order SN-like rebalancing, and it does not require consistent discretizations between the high-order and low-order equations as does DSA. The continuous Fourier analysis is also performed for rectangular geometry. This Fourier analysis shows that the AADR with directional S2-like weighting functions, which uses two different rebalance factors for the x and y directions per octant, provides better results than the AADR with the normal S2-like weighting functions, which uses a single weighting function per octant. The low-order equation in AADR is solved by a preconditioned Bi-CGSTAB algorithm, which reduces computational burden significantly.