ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Chang Je Park, Nam Zin Cho
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 64-74
Technical Note | doi.org/10.13182/NSE02-A2288
Articles are hosted by Taylor and Francis Online.
In solving the discrete ordinates neutron transport equation, the additive angular dependent rebalance (AADR) acceleration method proposed by the authors previously is simple to implement, unconditionally stable, and very effective. For slab geometry problems, it is demonstrated via Fourier analysis that the spectral radii of the AADR acceleration in S4-like and DP1-like rebalances as well as DP0-like rebalance are less than that of diffusion synthetic acceleration (DSA). This AADR acceleration method is easily extendable to DPN-like and low-order SN-like rebalancing, and it does not require consistent discretizations between the high-order and low-order equations as does DSA. The continuous Fourier analysis is also performed for rectangular geometry. This Fourier analysis shows that the AADR with directional S2-like weighting functions, which uses two different rebalance factors for the x and y directions per octant, provides better results than the AADR with the normal S2-like weighting functions, which uses a single weighting function per octant. The low-order equation in AADR is solved by a preconditioned Bi-CGSTAB algorithm, which reduces computational burden significantly.