ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. E. Dunn
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 48-56
Technical Note | doi.org/10.13182/NSE02-A2286
Articles are hosted by Taylor and Francis Online.
The Reich-Moore (RM) formulation is used extensively in many isotope/nuclide evaluations to represent neutron cross-section data for the resolved-resonance region. The RM equations require the evaluation of complex matrices (i.e., matrices with complex quantities) that are a function of the resonance energy and corresponding resonance parameters. Although the RM equations are documented in the open literature, computational pitfalls may be encountered with the implementation of the RM equations in a cross-section processing code. Based on experience, numerical instabilities in the form of nonphysical oscillations can occur in the calculated absorption, capture, or elastic scattering cross sections. To illustrate possible numerical instabilities, the conventional RM equations are presented, and the conditions that lead to numerical problems in the cross-section calculations are identified and demonstrated for 28Si and 60Ni. In an effort to circumvent the computational problems, detailed or revised RM expressions have been developed to efficiently and accurately calculate cross sections for neutron-induced reactions in the resolved-resonance region. The revised equations can be used to avoid numerical problems associated with the implementation of the RM formulation in a cross-section processing code. The revised Reich-Moore equations are also used to demonstrate the improved cross-section results (i.e., without numerical instabilities) for 28Si and 60Ni.