ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
G. Leinweber, J. A. Burke, H. D. Knox, N. J. Drindak, D. W. Mesh, W. T. Haines, R. V. Ballad, R. C. Block, R. E. Slovacek, C. J. Werner, M. J. Trbovich, D. P. Barry, T. Sato
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 1-21
Technical Paper | doi.org/10.13182/NSE02-A2283
Articles are hosted by Taylor and Francis Online.
The purpose of the present work is to measure the neutron cross sections of samarium accurately. The most significant isotope is 149Sm, which has a large neutron absorption cross section at thermal energies and is a 235U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics.Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25-m flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-m flight stations with 6Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multilevel R-matrix Bayesian code SAMMY version M2.The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D2O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple-scattering corrections to capture yield data and resolution functions specific to the RPI facility.Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral (RI) calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture RI to include the strong 0.1-eV resonance in 149Sm, present measurements agree within estimated uncertainties with ENDF/B-VI release 3. The thermal capture cross section was calculated from the present measurements of the resonance parameters and also agrees with ENDF within estimated uncertainties. The present measurements reduce the statistical uncertainties in resonance parameters compared to prior measurements.