ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Michael Khazen, Arie Dubi
Nuclear Science and Engineering | Volume 141 | Number 3 | July 2002 | Pages 272-287
Technical Paper | doi.org/10.13182/NSE02-A2282
Articles are hosted by Taylor and Francis Online.
Estimation of the probabilities of rare events with significant consequences, e.g., disasters, is one of the most difficult problems in Monte Carlo applications to systems engineering and reliability. The Bernoulli-type estimator used in analog Monte Carlo is characterized by extremely high variance when applied to the estimation of rare events. Variance reduction methods are, therefore, of importance in this field.The present work suggests a parametric nonanalog probability measure based on the superposition of transition biasing and forced events biasing. The cluster-event model is developed providing an effective and reliable approximation for the second moment and the benefit along with a methodology of selecting near-optimal biasing parameters. Numerical examples show a considerable benefit when the method is applied to problems of particular difficulty for the analog Monte Carlo method.The suggested model is applicable for reliability assessment of stochastic networks of complicated topology and high redundancy with component-level repair (i.e., repair applied to an individual failed component while the system is operational).