ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
General Atomics tests fuel as space nuclear propulsion R&D powers on
General Atomics Electromagnetic Systems (GA-EMS) has announced that it has subjected nuclear thermal propulsion (NTP) fuel samples to several “high-impact” tests at NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Ala. That news comes as NASA, the Department of Defense, the Department of Energy, and multiple nuclear and space technology companies continue to build on recent progress in nuclear thermal rocket design and demonstration.
S. N. Cramer
Nuclear Science and Engineering | Volume 141 | Number 3 | July 2002 | Pages 252-271
Technical Paper | doi.org/10.13182/NSE02-A2281
Articles are hosted by Taylor and Francis Online.
Radiation transport integrals containing both forward and adjoint fluxes are amenable to solution by the method of correlated coupling. Existing methods for surface integral coupling of forward and adjoint histories have been extended to volumetric coupling. Within the context of standard Monte Carlo usage, these integral solutions are exact, and the application to perturbation analysis requires no approximation. Coupled forward-adjoint history pairs are initiated at points selected uniformly in the perturbed volume. The energy and angular dependence of each history is dictated by the difference operator of the forward and adjoint transport equations, one equation for the perturbed system and one for the unperturbed system. The volume integral is accumulated as these history pairs score in the respective source or response regions. Some simple systems are analyzed showing that the new method gives comparable results, and a lower variance, as for existing methods. A review of current correlated coupling methodology is given, and suggestions for further study are outlined.