ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
James S. Warsa, Todd A. Wareing, Jim E. Morel
Nuclear Science and Engineering | Volume 141 | Number 3 | July 2002 | Pages 236-251
Technical Paper | doi.org/10.13182/NSE141-236
Articles are hosted by Taylor and Francis Online.
We recently presented a method for efficiently solving linear discontinuous discretizations of the two-dimensional P1 equations on rectangular meshes. The linear system was efficiently solved with Krylov iterative methods and a novel two-level preconditioner based on a linear continuous finite element discretization of the diffusion equation. Here, we extend the preconditioned solution method to three-dimensional, unstructured tetrahedral meshes. Solution of the P1 equations forms the basis of a diffusion synthetic acceleration (DSA) scheme for three-dimensional SN transport calculations with isotropic scattering. The P1 equations and the transport equation are both discretized with isoparametric linear discontinuous finite elements so that the DSA method is fully consistent. Fourier analysis in three dimensions and computational results show that this DSA scheme is stable and very effective. The fully consistent method is compared to other "partially consistent" DSA schemes. Results show that the effectiveness of the partially consistent schemes can degrade for skewed or optically thick mesh cells. In fact, one such scheme can degrade to the extent of being unstable even though it is both unconditionally stable and effective on rectangular grids. Results for a model application show that our fully consistent DSA method can outperform the partially consistent DSA schemes under certain circumstances.