ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Makoto Tsuiki, Sverre Hval
Nuclear Science and Engineering | Volume 141 | Number 3 | July 2002 | Pages 218-235
Technical Paper | doi.org/10.13182/NSE02-A2279
Articles are hosted by Taylor and Francis Online.
A new nodal diffusion method for the neutronics analysis of light water reactor cores has been developed. The method is based on an expansion of neutron fluxes within a node into a series of functions that are numerically obtained from single-assembly calculations without the process of assembly homogenization. The assembly heterogeneity effect can be taken into account in whole-core calculations in a consistent way with the heterogeneous single-assembly calculations, providing highly accurate results including intranodal pin-power distributions. The expansion coefficients are determined by a classical Ritz procedure in such a way that the solution becomes the most accurate - in the least squares sense - approximation to the exact solution. The present method was implemented in a two-dimensional nodal diffusion code and tested for benchmark cases both for boiling water reactors and pressurized water reactors. The root-mean-square errors of both node average powers and nodal maximum pin powers were observed to be <1%, with computing time of less than a few percent of the reference, fine-mesh calculation. It was also observed that the accuracy of the present method could be improved to almost any desired degree only by increasing the order of expansion polynomials.