ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
General Atomics tests fuel as space nuclear propulsion R&D powers on
General Atomics Electromagnetic Systems (GA-EMS) has announced that it has subjected nuclear thermal propulsion (NTP) fuel samples to several “high-impact” tests at NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Ala. That news comes as NASA, the Department of Defense, the Department of Energy, and multiple nuclear and space technology companies continue to build on recent progress in nuclear thermal rocket design and demonstration.
Masahiro Tatsumi, Akio Yamamoto
Nuclear Science and Engineering | Volume 141 | Number 3 | July 2002 | Pages 190-217
Technical Paper | doi.org/10.13182/NSE02-A2278
Articles are hosted by Taylor and Francis Online.
This paper describes a comprehensive study on the feasibility of advanced reactor core analyses within the framework of pin-by-pin multigroup transport calculations using a prototype of the object-oriented parallel core calculation code SCOPE. The SCOPE code enables the coupling of the diffusion theory method and the SPN transport theory method. The formulation of the method coupling and its verifications with benchmarks are presented.Quantitative estimation of the pin-cell homogenization effects within the octant core geometry of a three-loop-type pressurized water reactor (PWR) was performed. Comparisons between results by heterogeneous and homogeneous calculations revealed the effects on pin-cell homogenization in large-scale geometry. In order to preserve the neutronic property in the heterogeneous calculation within the framework of pin-cell homogenized pin-by-pin calculations, the applicability of the homogenized cross section corrected by the superhomogénéisation SPH method was studied. It was found that the pin-by-pin nine-group calculation by the SP3 transport theory method with the SPH-corrected cross sections gave good accuracy for the pin power distribution approximately <1% of the root-mean-square error. The calculation accuracy of the transport calculation and the effectiveness of the method coupling were also demonstrated through analyses of the initial core of an identical three-loop-type PWR.With fine-grained parallelism, the identical convergence property was obtained regardless of the number of processors. Parallel performance was almost scalable up to eight processors, 93% with eight processors in three-dimensional nine-group fine-mesh transport calculations with meshes of 180 × 180 × 30.