ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Zhiwen Xu, Michael J. Driscoll, Mujid S. Kazimi
Nuclear Science and Engineering | Volume 141 | Number 3 | July 2002 | Pages 175-189
Technical Paper | doi.org/10.13182/NSE02-A2277
Articles are hosted by Taylor and Francis Online.
To provide guidance for future light water reactor core design and fuel management strategies, the effects of the moderator-to-fuel ratio on burnup, core endurance, and waste disposal characteristics have been investigated. The analysis is based on a unit cell model of the standard four-loop Westinghouse pressurized water reactor (PWR) with varied water density, rod diameter, and lattice pitch. Two state-of-the-art computer codes, CASMO-4 and MOCUP (MCNP+ORIGEN), have been used. Considering the entire range of moderation (from fast spectra to overthermalized spectra), the results show that higher reactivity-limited burnup is achievable by either a wetter lattice or a much drier lattice than normal. In particular, epithermal lattices are distinctly inferior performers. Current PWR lattices are about the optimum in terms of highest fuel endurance. However, wetter lattices produce less plutonium with a degraded plutonium isotopic mix with respect to weapons usability. Neptunium-237 content is only mildly affected by the hydrogen-to-heavy-metal ratio. High burnup is significantly beneficial to reducing plutonium production per unit energy and to making its isotopic mix less attractive as a weapon material. In particular, the 238Pu to 239Pu ratio increases approximately as the 2.5 power of burnup for a fixed initial enrichment. Based on this neutronics study, wetter lattices are recommended for future high-burnup applications.