ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
General Atomics tests fuel as space nuclear propulsion R&D powers on
General Atomics Electromagnetic Systems (GA-EMS) has announced that it has subjected nuclear thermal propulsion (NTP) fuel samples to several “high-impact” tests at NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Ala. That news comes as NASA, the Department of Defense, the Department of Energy, and multiple nuclear and space technology companies continue to build on recent progress in nuclear thermal rocket design and demonstration.
M. F. Murphy, A. Lüthi, R. Seiler, P. Grimm, O. Joneja, A. Meister, R. van Geemert, F. Jatuff, R. Brogli, R. Jacot-Guillarmod, T. Williams, S. Helmersson, R. Chawla
Nuclear Science and Engineering | Volume 141 | Number 1 | May 2002 | Pages 32-45
Technical Paper | doi.org/10.13182/NSE02-A2264
Articles are hosted by Taylor and Francis Online.
Accurate critical experiments have been performed for the validation of total fission (Ftot) and 238U-capture (C8) reaction rate distributions obtained with CASMO-4, HELIOS, BOXER, and MCNP4B for the lower axial region of a real Westinghouse SVEA-96+ fuel assembly. The assembly comprised fresh fuel with an average 235U enrichment of 4.02 wt%, a maximum enrichment of 4.74 wt%, 14 burnable-absorber fuel pins, and full-density water moderation. The experimental configuration investigated was core 1A of the LWR-PROTEUS Phase I project, where 61 different fuel pins, representing ~64% of the assembly, were gamma-scanned individually. Calculated (C) and measured (E) values have been compared in terms of C/E distributions. For Ftot, the standard deviations are 1.2% for HELIOS, 0.9% for CASMO-4, 0.8% for MCNP4B, and 1.7% for BOXER. Standard deviations of 1.1% for HELIOS, CASMO-4, and MCNP4B and 1.2% for BOXER were obtained in the case of C8. Despite the high degree of accuracy observed on the average, it was found that the five burnable-absorber fuel pins investigated showed a noticeable underprediction of Ftot, quite systematically, for the deterministic codes evaluated (average C/E for the burnable-absorber fuel pins in the range 0.974 to 0.988, depending on the code).