ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
M. M. R. Williams
Nuclear Science and Engineering | Volume 141 | Number 1 | May 2002 | Pages 13-31
Technical Paper | doi.org/10.13182/NSE02-A2263
Articles are hosted by Taylor and Francis Online.
A method has been developed for calculating the probability distribution of the multiplication factor in a system in which the fissile or absorbing elements are randomly distributed across the core and can have random material properties. It has practical applications to the storage of radioactive waste in drums in which fissile material is stored in a background matrix. The procedure is based upon the source-sink method of heterogeneous reactors developed by Feinberg, Galanin, Horning and Stewart in which the fuel element or absorber is replaced by a point sink of thermal neutrons and a point source of fast neutrons. The positions and material properties are sampled from a random distribution and a probability distribution is built up for the multiplication factor keff. Calculations are made for spheres in a cubic system and probability distributions, mean values and variances are obtained for 1, 2, 3, 5, 10 and 25 spheres in both water and graphite moderated systems. Some interesting fine structure is found in the probability distributions which is attributed to preferred symmetric groupings of the spheres in the lattice. We also examine the effect of small random movements of the spheres about their mean positions and in particular study the effect of anisotropy of motion, i.e. perpendicular to the plane and in the plane, on the mean value of the multiplication factor and the associated probability distributions. Some experimental results obtained by Lloyd on reactivity changes in random lattices are examined and qualitative agreement is obtained. A convenient form of the three dimensional Greens function for a rectangular box is developed which is especially useful for numerical purposes due to its rapid convergence properties.