ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Randal S. Baker
Nuclear Science and Engineering | Volume 141 | Number 1 | May 2002 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE02-A2262
Articles are hosted by Taylor and Francis Online.
We describe the development and implementation of a block-based adaptive mesh refinement (AMR) algorithm for solving the discrete ordinates neutral particle transport equation. AMR algorithms allow mesh refinement in areas of interest without requiring the extension of this refinement throughout the entire problem geometry, minimizing the number of computational cells required for calculations. The block-based AMR algorithm described here is a hybrid between traditional cell or patch-based approaches and is designed to allow an efficient parallel solution of the transport equation while still reducing the cell count.This paper discusses the data structure implementation and CPU/memory efficiency for our Block AMR method, the equations and procedures used in mapping edge fluxes between blocks of different refinement levels for both diamond and linear discontinuous spatial discretizations, effects of AMR on mesh convergence, and our approach to parallelization. Comparisons between our Block AMR method and a traditional single-level mesh are presented for a sample brachytherapy problem. The Block AMR results are shown to be significantly faster for this problem (on at least a few processors), while still returning an accurate solution.