ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Michelle Pitts, Farzad Rahnema
Nuclear Science and Engineering | Volume 140 | Number 3 | March 2002 | Pages 241-266
Technical Paper | doi.org/10.13182/NSE02-A2259
Articles are hosted by Taylor and Francis Online.
The number of spent nuclear fuel assemblies taken from nuclear power plants and to be stored in existing storage pools is increasing. Therefore, there is a need to optimize the storage configurations. The computer codes and cross sections used to analyze proposed storage configurations must be validated through comparison with experimental data. Restrictive values of ksafe, caused by limited data, can prevent optimal storage utilization. As a collaborative effort between Westinghouse Safety Management Solutions, Oak Ridge National Laboratory (ORNL), Georgia Institute of Technology, and the University of Missouri Research Reactor (MURR), more than 120 experiments were performed using four highly enriched MURR fuel assemblies. The 252Cf-source-driven noise analysis technique developed at ORNL was used as the measurement method for these experiments. This method is based on calculating a specific ratio of measured auto-power and cross-power spectral densities. Twenty-two unique configurations from the MURR experimental program were analyzed for benchmarking purposes.These subcritical experiments were described and analyzed in this paper to provide new measurements to increase the amount of data available for benchmarking criticality codes and cross sections for systems that are far from critical (keff < 0.9).All aspects of the experimental apparatus designed for the experiment program are thoroughly described to enable calculational modeling. Measured and calculated results for the 22 configurations of interest are given. Thorough perturbation studies on measurement uncertainties (e.g., fuel spacing and composition) were performed to determine the uncertainty on the ratio and keff values. Inferred keff values ranged from 0.648 ± 0.005 to 0.860 ± 0.006. A simplified benchmark model is described that consists of the four fuel assemblies, four 3He detectors, detector drywells, and the water reflector. For these measurements, the calculated ratio and keff values agreed with the measurement results within the measurement uncertainty. All of the analyzed configurations were considered acceptable for validation of computer codes and cross sections.