ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
A. W. Cronenberg, H. K. Fauske, D. T. Eggen
Nuclear Science and Engineering | Volume 50 | Number 1 | January 1973 | Pages 53-62
Technical Paper | doi.org/10.13182/NSE73-A22588
Articles are hosted by Taylor and Francis Online.
As part of the liquid-metal fast breeder reactor (LMFBR) safety program, the consequences of a hypothetical molten-fuel release into sodium coolant following fuel pin failure(s) must be evaluated, in order that design constraints can be established to maximize the safety and minimize the economical penalties of such an event. This work represents the first attempt to interpret the voiding rates obtained from an in-pile, fuel-failure experiment in the TREAT reactor in terms of a molten fuel-coolant interaction. Results indicate that it is not only possible to reduce in-pile data to a workable form, but also to obtain representation of loop conditions for simple geometries. The analysis has been successful in reproducing the experimental voiding history in a selected TREAT experiment. It is further shown that the formation of condensate at cold boundaries significantly reduces the amount of energy imparted to the expanding vapor bubble, which in turn limits the extent of the thermal-to-mechanical energy conversion process. It is important to account for this effect when extrapolating in-pile results to reactor conditions.