ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
A. W. Cronenberg, H. K. Fauske, D. T. Eggen
Nuclear Science and Engineering | Volume 50 | Number 1 | January 1973 | Pages 53-62
Technical Paper | doi.org/10.13182/NSE73-A22588
Articles are hosted by Taylor and Francis Online.
As part of the liquid-metal fast breeder reactor (LMFBR) safety program, the consequences of a hypothetical molten-fuel release into sodium coolant following fuel pin failure(s) must be evaluated, in order that design constraints can be established to maximize the safety and minimize the economical penalties of such an event. This work represents the first attempt to interpret the voiding rates obtained from an in-pile, fuel-failure experiment in the TREAT reactor in terms of a molten fuel-coolant interaction. Results indicate that it is not only possible to reduce in-pile data to a workable form, but also to obtain representation of loop conditions for simple geometries. The analysis has been successful in reproducing the experimental voiding history in a selected TREAT experiment. It is further shown that the formation of condensate at cold boundaries significantly reduces the amount of energy imparted to the expanding vapor bubble, which in turn limits the extent of the thermal-to-mechanical energy conversion process. It is important to account for this effect when extrapolating in-pile results to reactor conditions.