ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
O. K. Harling, K. J. Riley, T. H. Newton, B. A. Wilson, J. A. Bernard, L-W. Hu, E. J. Fonteneau, P. T. Menadier, S. J. Ali, B. Sutharshan, G. E. Kohse, Y. Ostrovsky, P. W. Stahle, P. J. Binns, W. S. Kiger III, P. M. Busse
Nuclear Science and Engineering | Volume 140 | Number 3 | March 2002 | Pages 223-240
Technical Paper | doi.org/10.13182/NSE02-A2258
Articles are hosted by Taylor and Francis Online.
A new type of epithermal neutron irradiation facility for use in neutron capture therapy has been designed, constructed, and put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). A fission converter, using plate-type fuel and driven by the MITR, is used as the source of neutrons. After partial moderation and filtration of the fission neutrons, a high-intensity forward directed beam is available with epithermal neutron flux [approximately equal to]1010 n/cm2s, 1 eV E 10 keV, at the entrance to the medical irradiation room, and epithermal neutron flux = 3 to 5 × 109 n/cm2s at the end of the patient collimator. This is currently the highest-intensity epithermal neutron beam. Furthermore, the system is designed and licensed to operate at three times higher power and flux should this be desired. Beam contamination from unwanted fast neutrons and gamma rays in the aluminum, polytetrafluoroethylene, cadmium and lead-filtered beam is negligible with a specific fast neutron and gamma dose, D,fn/epi [less than or approximately equal] 2 × 10-13 Gy cm2/nepi. With a currently approved neutron capture compound, boronophenylalanine, the therapeutically advantageous depth of penetration is >9 cm for a unilateral beam placement. Single fraction irradiations to tolerance can be completed in 5 to 10 min. An irradiation control system based on beam monitors and redundant, high-reliability programmable logic controllers is used to control the three beam shutters and to ensure that the prescribed neutron fluence is accurately delivered to the patient. A patient collimator with variable beam sizes facilitates patient irradiations in any desired orientation. A shielded medical room with a large window provides direct viewing of the patient, as well as remote viewing by television. Rapid access through a shielded and automatically operated door is provided. The D2O cooling system for the fuel has been conservatively designed with excess capacity and is fully instrumented to ensure detection and control of off-normal conditions. A wide range of possible abnormal events or accident scenarios has been analyzed to show that even in the worst cases, there should be no fission product release through fuel damage. This facility has been licensed to operate by the U.S. Nuclear Regulatory Commission, and initial operation commenced in June 2000.