ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Udo Wehmann, Hidehito Kinjo, Takeshi Kageyama
Nuclear Science and Engineering | Volume 140 | Number 3 | March 2002 | Pages 205-222
Technical Paper | doi.org/10.13182/NSE02-A2257
Articles are hosted by Taylor and Francis Online.
Studies have been performed on plutonium burning in the Japanese prototype fast breeder reactor Monju. The main aims of these studies were to illustrate the plutonium-burning capabilities of fast reactors and to investigate the consequences of the related core design measures on the main core characteristics of Monju. Burner cores with diluting pins, with diluting subassemblies (also called diluents), and with an internal slice of inert material have been investigated; these require an increased average plutonium enrichment and thus offer an enhanced plutonium-burning rate. On the other hand, the consequences of the elimination of the radial and/or axial blanket have been investigated.Among the burner concepts, the B4C containing diluents have been found to be preferable because they cause the smallest maximum linear rating increase and offer the largest flexibility to adapt their reactivity via a modification of the B4C content. They also do not require a new fuel subassembly concept.For the case of the blanket elimination, the replacement of the blankets by steel reflectors has been found to be the best solution. The main consequence of the elimination of both blankets is the increase of the maximum linear rating by up to 11%. Whether this increase may lead to problems will depend on the actual linear power level of the core.