ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
William J. Westlake, Jr., A. F. Henry
Nuclear Science and Engineering | Volume 49 | Number 4 | December 1972 | Pages 482-488
Technical Paper | doi.org/10.13182/NSE72-A22567
Articles are hosted by Taylor and Francis Online.
A method is proposed for treating depletion effects in a nuclear reactor by a mathematical model in which the time derivative of the neutron flux is retained and the reactor is kept at its desired power level through operation of a control system actuated by any differences between the actual and desired power level. The criticality searches required with the conventional depletion method to find consistent density-temperature profiles, control rod positions, xenon distribution, and flux shapes are thereby avoided. The time-dependent flux, control, and isotopic concentration equations are linearized and solved simultaneously by a numerical procedure that permits time steps as large as those employed with conventional depletion codes. Simple numerical examples that test the essential features of the method are presented.