ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
R. J. Tuttle, T. H. Springer
Nuclear Science and Engineering | Volume 49 | Number 4 | December 1972 | Pages 468-481
Technical Paper | doi.org/10.13182/NSE72-A22566
Articles are hosted by Taylor and Francis Online.
Central reactivity worth measurements have been made in a fast reactor spectrum with samples of natural boron, boron-10, europium oxide, and tantalum. Various sized samples were used to investigate self-shielding effects in a fast reactor test region in Assembly 17 of the Epithermal Critical Experiments Laboratory. In addition to single cylinders, clusters of tantalum pins simulating a control rod segment were also used. Compared to an infinitely dilute sample, the most massive tantalum sample showed a reduction of 49 percent in reactivity per unit mass. For comparison with the tantalum measurements, extensive calculations using first-order perturbation theory, exact perturbation theory, and eigenvalue differences show good agreement within appropriate ranges—first-order perturbation for small perturbations, eigenvalue differences for large perturbations, and exact perturbation throughout the range. For europium, first-order perturbation calculations are in excellent agreement with the measurements, while for boron and B, the calculations predict a somewhat greater worth than was measured. By using the calculations to extrapolate the measurements, the following infinitely dilute specific reactivity values are obtained: boron, -55.8 m/g; 10B, −293.8 mg; europium, −20.6 mg; and tantalum, −5.83 m/g.