ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
R. J. Tuttle, T. H. Springer
Nuclear Science and Engineering | Volume 49 | Number 4 | December 1972 | Pages 468-481
Technical Paper | doi.org/10.13182/NSE72-A22566
Articles are hosted by Taylor and Francis Online.
Central reactivity worth measurements have been made in a fast reactor spectrum with samples of natural boron, boron-10, europium oxide, and tantalum. Various sized samples were used to investigate self-shielding effects in a fast reactor test region in Assembly 17 of the Epithermal Critical Experiments Laboratory. In addition to single cylinders, clusters of tantalum pins simulating a control rod segment were also used. Compared to an infinitely dilute sample, the most massive tantalum sample showed a reduction of 49 percent in reactivity per unit mass. For comparison with the tantalum measurements, extensive calculations using first-order perturbation theory, exact perturbation theory, and eigenvalue differences show good agreement within appropriate ranges—first-order perturbation for small perturbations, eigenvalue differences for large perturbations, and exact perturbation throughout the range. For europium, first-order perturbation calculations are in excellent agreement with the measurements, while for boron and B, the calculations predict a somewhat greater worth than was measured. By using the calculations to extrapolate the measurements, the following infinitely dilute specific reactivity values are obtained: boron, -55.8 m/g; 10B, −293.8 mg; europium, −20.6 mg; and tantalum, −5.83 m/g.