ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
R. O. Nelson, A. Michaudon
Nuclear Science and Engineering | Volume 140 | Number 3 | March 2002 | Pages 195-204
Technical Paper | doi.org/10.13182/NSE02-A2256
Articles are hosted by Taylor and Francis Online.
Because of the low-energy threshold and relatively large cross section of the 9Be(n,2n) reaction, beryllium is a very attractive neutron multiplier for some fast-neutron systems, such as those used in the production of fusion energy. But, tritium is also produced when beryllium is irradiated with 14-MeV neutrons emitted from the fusion of deuterium and tritium ions. Among the two exit channels of the 9Be(n,t)7Li reaction of ~14-MeV incident-neutron energy, the 9Be(n,t1)7Li channel also emits a 0.478-MeV gamma ray. The purpose of the present study is to measure the cross section for the 9Be(n,t1)7Li reaction and also that of the more general 9Be(n,x)7Li reaction with the production of the same 0.478-MeV gamma ray for incident-neutron energies from the 12-MeV threshold to 200 MeV. Because the 7Li levels excited above 0.478 MeV are unstable against particle emission, the study of the 9Be(n,t1)7Li reaction gives direct access to the cross section for the formation of 7Li* in its 0.478-MeV excited state. The few previous experimental data for this reaction are restricted to incident-neutron energies of ~14 MeV with large discrepancies between the results. The present data are obtained with a BeO sample, using the pulsed source of high-energy neutrons of the Weapons Neutron Research Facility (WNR) at the Los Alamos Neutron Science Center (LANSCE). The 478-keV gamma rays emitted in 9Be(n,x)7Li reactions are detected with two high-resolution Ge detectors. The data thus obtained are presented and compared with previous data on the 9Be(n,t1)7Li and the 9Be(n,t)7Li reactions. Examination of the present data also provides insight into the 10Be level scheme.