ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
L. R. Fawcett, Jr., A. Keith Furr, J. G. Lindsay
Nuclear Science and Engineering | Volume 49 | Number 3 | November 1972 | Pages 317-329
Technical Paper | doi.org/10.13182/NSE72-A22545
Articles are hosted by Taylor and Francis Online.
Neutron capture cross sections for 154Sm, 160Gd, 164Dy, and 165Ho (ground state) have been investigated in the energy range from 5 to 160 keV. Capture cross section data in this energy region that are currently available for 165 Ho varies by approximately a factor of two between different workers and for 154Sm, 160Gd, and 164Dy little or no previously published data are available in this energy range. The present work represents an attempt to remove some of the uncertainty in the case of 165 Ho and to provide original data for the other three isotopes over the 5 to 160 keV region. This work was done by activation of metal samples of the above mentioned rare earths and counting the decay products with a well type plastic scintillator. Samples were activated by neutrons generated by the 7Li(p,n)7 Be reaction with the samples being placed at 90 deg with respect to the neutron target. The 0.820 b capture cross section of 127I at 25 keV was used as the standard for normalization along with the thermal neutron capture cross sections of the isotopes. From the experimental cross section curves the γ-ray strength functions, the s-wave neutron strength functions, and the p-wave neutron strength functions were determined. These parameters are the first to be determined for samarium and dysprosium over an energy region this broad while for gadolinium, only one other comparable set exists.