ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Weston M. Stacey, Jr.
Nuclear Science and Engineering | Volume 48 | Number 4 | August 1972 | Pages 444-458
Technical Paper | doi.org/10.13182/NSE72-A22512
Articles are hosted by Taylor and Francis Online.
A variational theory is developed for estimating reactivity worths (and other bilinear ratios) and reaction rate ratios in critical nuclear reactors. These estimates embody corrections to first-order perturbation theory which account for the flux change caused by the reactivity perturbation and for the changes in the flux and adjoint when the system is altered. The physical significance of certain generalized functions which arise in the development of the theory is investigated. The relation of the variational theory to generalized perturbation theory is examined, and the additional restrictions required to reduce the former to the latter are established. Finally, the variational theory is demonstrated to yield accurate estimates for reactivity worths and reaction rate ratios in a fast reactor model, subject to a wide range of alterations in nuclear properties and compositions.