ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
J. C. Guyot, G. H. Miley, J. T. Verdeyen
Nuclear Science and Engineering | Volume 48 | Number 4 | August 1972 | Pages 373-386
Technical Paper | doi.org/10.13182/NSE72-A22505
Articles are hosted by Taylor and Francis Online.
The transport of heavy charged particles produced by the 10B (n,α) nuclear reaction is predicted using a mean-range straight-flight model. The slowing down of these particles in a gas adjacent to the coating where they are born is described in terms of their flux energy spectrum, scalar flux, average energy, and energy-loss rate. These results are used in a plasma kinetics model which is compared to measurements of metastable excited state densities in helium and neon plasmas created by the heavy charged particles. The space-dependent fast primary electron (δ ray) energy spectrum produced by the heavy charged particles in helium is calculated, as well as the total number of fast primary electrons and their average kinetic energy.