ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
B. Laponche, M. Brunet, Y. Bouedo
Nuclear Science and Engineering | Volume 48 | Number 3 | July 1972 | Pages 305-318
Technical Paper | doi.org/10.13182/NSE72-A22488
Articles are hosted by Taylor and Francis Online.
A method is described for the analysis of oscillation measurements in critical assemblies where fissions are produced predominantly by thermal neutrons. The oscillation method developed in the CEA deals with the measurement of two signals: the “global” signal, which gives a representation of the sample reactivity, and the “local” signal, which gives the variation of the neutron density at the vicinity of the sample. Using a double calibration of the reactor by samples of enriched or depleted uranium and boronated uranium, it is possible to obtain independently the absorption and production reaction rates for plutonium in each sample, as a function of 235U reaction rates. The equivalent sample method is a more recent development and is based on the fact that a given perturbation of the absorption cross section, with any law of variation with energy in the thermal region, can be replaced by an absorption of well-known variation with energy which has the same effect on the neutronic density in the reactor beyond a small distance where spectrum effects are still appreciable. A series of measurements of uranium/plutonium rods performed in the CESAR reactor, from 20 to 400°C, is analyzed, and modifications of the absorption and fission cross sections of plutonium isotopes are proposed.