ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
R. C. Lloyd, E. D. Clayton, L. E. Hansen
Nuclear Science and Engineering | Volume 48 | Number 3 | July 1972 | Pages 300-304
Technical Paper | doi.org/10.13182/NSE72-A22487
Articles are hosted by Taylor and Francis Online.
Experiments were performed to establish the effect of a soluble neutron absorber (gadolinium nitrate) on the criticality of plutonium nitrate solutions. The solutions contained plutonium at concentrations of ∼116 g Pu/liter and at ∼363 g Pu/liter. Measured quantities of gadolinium nitrate were mixed with these solutions to produce changes in critical solution height within a 24-in. -diam water-reflected cylinder. Gadolinium concentrations up to 20.25 g Gd/liter were used and the effect determined through the observed change in height. Monte Carlo calculations were used to compute the criticality factors (keff’s) for each of the measured critical configurations. The computed factors were below unity in each case (largest departure about 2% less than unity). The gadolinium proved to be an effective neutron absorber. Its effectiveness decreased significantly, however, in the higher plutonium concentration and faster neutron spectrum. Although comparable values of k∞ were computed (1.603 and 1.503) for the two plutonium concentrations in the experiments, the calculations show 2.4 g Gd/liter would be required to reduce k∞ to unity in the first case, whereas about 72 g Gd/liter would have been required in the second (316 g Pu/liter solution). Curves were prepared showing the computed quantities of gadolinium required to reduce k∞ to unity as a function of plutonium concentration. Also included are computed critical radii for infinitely long cylinders of plutonium nitrate solution for several different gadolinium concentrations. There was no evidence of chemical instability (or precipitation) of the gadolinium in the plutonium nitrate solution during the course of the experiments and over a 1-mo long test (a question of concern in using soluble poison for criticality control).