ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. C. Geisler, R. E. Zindler
Nuclear Science and Engineering | Volume 48 | Number 3 | July 1972 | Pages 255-265
Technical Paper | doi.org/10.13182/NSE72-A22484
Articles are hosted by Taylor and Francis Online.
An improved method, called Simulation of System Operation for Reliability Analysis, for utilizing Monte Carlo techniques in the computer analysis of the reliability of complex systems is presented. This method is particularly applicable to systems which employ highly reliable elements with extremely low failure rates. Earlier techniques of Brunot simulate operation of a system through a sequential series of time steps and test for system failure in each time step. After a sufficient number of time steps, a system failure probability can be determined. When such methods are applied to systems composed of highly reliable components, computer time requirements can become excessive. This is due to the great number of time steps which must be examined to obtain statistically significant numbers of system failures. The method to be described begins by randomly selecting a “critical’ ’ time step of failure for each component. Failures are then examined to determine if a system failure combination has occurred in any time step. To continue the simulation, a second critical time step is chosen for each component and added to the first. The program proceeds in this fashion, considering only time steps in which at least one failure has occurred. Thus computer time requirements become essentially independent of failure rates.